布隆过滤器
原理
当一个元素被加入集合时,通过 K
个 Hash 函数将这个元素映射成一个位阵列(Bit array)中的 K 个点,把它们置为 1。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:
- 如果这些点有任何一个 0,则被检索元素一定不在;
- 如果都是 1,则被检索元素很可能在。
误算率
假设Bit Array位数为m
, 插入元素个数为n
,Hash函数个数为k
说明 | 计算公式 |
---|---|
n次插入,某个位置被置成1的概率 | \(P=1-(1-\frac{1}{m})^{kn}=1-(1-\frac{1}{m})^{m(\frac{kn}{m})} \approx 1-e^\frac{-kn}{m}\) |
误判的概率 | \(p^k=(1-e^\frac{-kn}{m})^k\),当 \(k = m /n * ln 2 = 0.7m/n\) 时,概率最小(取对数,求导=0) 误判率 < 1 / 2,则 \(ln 2 * \frac{m}{n} > 1\) |
注: \(lim (1+\frac{1}{x})^x = e\)
缺点:
-
随着存入的元素数量增加,误算率随之增加;(建立白名单)
-
一般情况下不能从布隆过滤器中删除元素;
误算率表
m/n | k | k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=8 |
---|---|---|---|---|---|---|---|---|---|
2 | 1.39 | 0.393 | 0.400 | ||||||
3 | 2.08 | 0.283 | 0.237 | 0.253 | |||||
4 | 2.77 | 0.221 | 0.155 | 0.147 | 0.160 | ||||
5 | 3.46 | 0.181 | 0.109 | 0.092 | 0.092 | 0.101 | |||
6 | 4.16 | 0.154 | 0.0804 | 0.0609 | 0.0561 | 0.0578 | 0.0638 | ||
7 | 4.85 | 0.133 | 0.0618 | 0.0423 | 0.0359 | 0.0347 | 0.0364 | ||
8 | 5.55 | 0.118 | 0.0489 | 0.0306 | 0.024 | 0.0217 | 0.0216 | 0.0229 | |
9 | 6.24 | 0.105 | 0.0397 | 0.0228 | 0.0166 | 0.0141 | 0.0133 | 0.0135 | 0.0145 |
10 | 6.93 | 0.0952 | 0.0329 | 0.0174 | 0.0118 | 0.00943 | 0.00844 | 0.00819 | 0.00846 |
11 | 7.62 | 0.0869 | 0.0276 | 0.0136 | 0.00864 | 0.0065 | 0.00552 | 0.00513 | 0.00509 |
12 | 8.32 | 0.08 | 0.0236 | 0.0108 | 0.00646 | 0.00459 | 0.00371 | 0.00329 | 0.00314 |
13 | 9.01 | 0.074 | 0.0203 | 0.00875 | 0.00492 | 0.00332 | 0.00255 | 0.00217 | 0.00199 |
14 | 9.7 | 0.0689 | 0.0177 | 0.00718 | 0.00381 | 0.00244 | 0.00179 | 0.00146 | 0.00129 |
15 | 10.4 | 0.0645 | 0.0156 | 0.00596 | 0.003 | 0.00183 | 0.00128 | 0.001 | 0.000852 |
16 | 11.1 | 0.0606 | 0.0138 | 0.005 | 0.00239 | 0.00139 | 0.000935 | 0.000702 | 0.000574 |
17 | 11.8 | 0.0571 | 0.0123 | 0.00423 | 0.00193 | 0.00107 | 0.000692 | 0.000499 | 0.000394 |
18 | 12.5 | 0.054 | 0.0111 | 0.00362 | 0.00158 | 0.000839 | 0.000519 | 0.00036 | 0.000275 |
19 | 13.2 | 0.0513 | 0.00998 | 0.00312 | 0.0013 | 0.000663 | 0.000394 | 0.000264 | 0.000194 |
20 | 13.9 | 0.0488 | 0.00906 | 0.0027 | 0.00108 | 0.00053 | 0.000303 | 0.000196 | 0.00014 |
21 | 14.6 | 0.0465 | 0.00825 | 0.00236 | 0.000905 | 0.000427 | 0.000236 | 0.000147 | 0.000101 |
22 | 15.2 | 0.0444 | 0.00755 | 0.00207 | 0.000764 | 0.000347 | 0.000185 | 0.000112 | 7.46e-05 |
23 | 15.9 | 0.0425 | 0.00694 | 0.00183 | 0.000649 | 0.000285 | 0.000147 | 8.56e-05 | 5.55e-05 |
24 | 16.6 | 0.0408 | 0.00639 | 0.00162 | 0.000555 | 0.000235 | 0.000117 | 6.63e-05 | 4.17e-05 |
25 | 17.3 | 0.0392 | 0.00591 | 0.00145 | 0.000478 | 0.000196 | 9.44e-05 | 5.18e-05 | 3.16e-05 |
26 | 18 | 0.0377 | 0.00548 | 0.00129 | 0.000413 | 0.000164 | 7.66e-05 | 4.08e-05 | 2.42e-05 |
27 | 18.7 | 0.0364 | 0.0051 | 0.00116 | 0.000359 | 0.000138 | 6.26e-05 | 3.24e-05 | 1.87e-05 |
28 | 19.4 | 0.0351 | 0.00475 | 0.00105 | 0.000314 | 0.000117 | 5.15e-05 | 2.59e-05 | 1.46e-05 |
29 | 20.1 | 0.0339 | 0.00444 | 0.000949 | 0.000276 | 9.96e-05 | 4.26e-05 | 2.09e-05 | 1.14e-05 |
30 | 20.8 | 0.0328 | 0.00416 | 0.000862 | 0.000243 | 8.53e-05 | 3.55e-05 | 1.69e-05 | 9.01e-06 |
k个Hash函数的选择
《Less Hashing, Same Performance: Building a Better Bloom Filter》提出的一个技巧,可以用2个哈希函数来模拟k个哈希函数,即gi(x) = h1(x) + i * h2(x)
,其中0<=i<=k-1
,可以参考Google Guava
中的Bloom Filter的实现。
假如,你有一个哈希函数f,它的输出域是\(2^{64}\),也就是16字节的字符串,每个位置上是16进制的数字0-9,a-f
。我们将这16字节的输出域分为两半,高八位和低八位是相互独立的(这16位都相互独立)。这样,我们将高八位作为新的哈希函数f1的输出域,低八位作为新的哈希函数f2的输出域,得到两个新的哈希函数,它们之间相互独立。故此可以通过以下算式得到1000个哈希函数: