
44 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

practice

I
M

A
G

E
 B

Y
 B

U
G

 F
I

S
H

IN THE WAKE of the recent Meltdown and Spectre
vulnerabilities, it is worth spending some time looking
at root causes. Both of these vulnerabilities involved
processors speculatively executing instructions past
some kind of access check and allowing the attacker to
observe the results via a side channel. The features that
led to these vulnerabilities, along with several others,
were added to let C programmers continue to believe
they were programming in a low-level language, when
this hasn’t been the case for decades.

Processor vendors are not alone in this. Those of us
working on C/C++ compilers have also participated.

Computer science pioneer Alan Perlis defined low-
level languages this way:

“A programming language is low level when its
programs require attention to the irrelevant.”5

While, yes, this definition applies to C, it does not
capture what people desire in a low-level language.
Various attributes cause people to regard a language as
low level. Think of programming languages as belonging

on a continuum, with assembly at one
end and the interface to the Starship
Enterprise’s computer at the other.
Low-level languages are “close to the
metal,” whereas high-level languages
are closer to how humans think.

For a language to be “close to the
metal,” it must provide an abstract ma-
chine that maps easily to the abstrac-
tions exposed by the target platform.
It’s easy to argue that C was a low-level
language for the PDP-11. They both de-
scribed a model in which programs ex-
ecuted sequentially, in which memory
was a flat space, and even the pre- and
post-increment operators cleanly lined
up with the PDP-11 addressing modes.

Fast PDP-11 Emulators
The root cause of the Spectre and Melt-
down vulnerabilities was that proces-
sor architects were trying to build not
just fast processors, but fast processors
that expose the same abstract machine
as a PDP-11. This is essential because
it allows C programmers to continue in
the belief that their language is close to
the underlying hardware.

C code provides a mostly serial ab-
stract machine (until C11, an entirely
serial machine if nonstandard vendor
extensions were excluded). Creating
a new thread is a library operation
known to be expensive, so proces-
sors wishing to keep their execution
units busy running C code rely on ILP
(instruction-level parallelism). They
inspect adjacent operations and issue
independent ones in parallel. This
adds a significant amount of complex-
ity (and power consumption) to allow
programmers to write mostly sequen-
tial code. In contrast, GPUs achieve
very high performance without any of
this logic, at the expense of requiring
explicitly parallel programs.

The quest for high ILP was the di-
rect cause of Spectre and Meltdown. A
modern Intel processor has up to 180
instructions in flight at a time (in stark
contrast to a sequential C abstract
machine, which expects each opera-
tion to complete before the next one
begins). A typical heuristic for C code

C Is Not
a Low-Level
Language

DOI:10.1145/3209212

	� Article development led by
queue.acm.org

Your computer is not a fast PDP-11.

BY DAVID CHISNALL

http://dx.doi.org/10.1145/3209212
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3209212&domain=pdf&date_stamp=2018-06-25

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 45

46 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

practice

proponents often dismiss when talk-
ing about other languages.

Unfortunately, simple translation
providing fast code is not true for C.
In spite of the heroic efforts that pro-
cessor architects invest in trying to
design chips that can run C code fast,
the levels of performance expected by
C programmers are achieved only as
a result of incredibly complex com-
piler transforms. The Clang com-
piler, including the relevant parts of
LLVM, is around two million lines of
code. Even just counting the analy-
sis and transform passes required to
make C run quickly adds up to almost
200,000 lines (excluding comments
and blank lines).

For example, in C, processing a
large amount of data means writing a
loop that processes each element se-
quentially. To run this optimally on a
modern CPU, the compiler must first
determine that the loop iterations
are independent. The C restrict
keyword can help here. It guarantees
that writes through one pointer do
not interfere with reads via another
(or if they do, that the programmer
is happy for the program to give
unexpected results). This informa-
tion is far more limited than in a
language such as Fortran, which is
a big part of the reason that C has
failed to displace Fortran in high-per-
formance computing.

Once the compiler has determined
that loop iterations are independent,
then the next step is to attempt to
vectorize the result, because modern
processors get four to eight times the
throughput in vector code than they
achieve in scalar code. A low-level lan-
guage for such processors would have
native vector types of arbitrary lengths.
LLVM IR (intermediate representation)
has precisely this, because it is always
easier to split a large vector operation
into smaller ones than to construct
larger vector operations.

Optimizers at this point must fight
the C memory layout guarantees. C
guarantees that structures with the
same prefix can be used interchange-
ably, and it exposes the offset of struc-
ture fields into the language. This
means that a compiler is not free to
reorder fields or insert padding to im-
prove vectorization (for example, trans-
forming a structure of arrays into an

is that there is a branch, on average,
every seven instructions. If you wish to
keep such a pipeline full from a single
thread, then you must guess the tar-
gets of the next 25 branches. Again,
this adds complexity; it also means
that an incorrect guess results in work
being done and then discarded, which
is not ideal for power consumption.
This discarded work has visible side ef-
fects, which the Spectre and Meltdown
attacks could exploit.

On a modern high-end core, the
register rename engine is one of the
largest consumers of die area and
power. To make matters worse, it
cannot be turned off or power gated
while any instructions are running,
which makes it inconvenient in a dark
silicon era when transistors are cheap
but powered transistors are an expen-
sive resource. This unit is conspicu-
ously absent on GPUs, where paral-
lelism again comes from multiple
threads rather than trying to extract
instruction-level parallelism from in-
trinsically scalar code. If instructions
do not have dependencies that must
be reordered, then register renaming
is not necessary.

Consider another core part of the
C abstract machine’s memory model:
flat memory. This has not been true for
more than two decades. A modern pro-
cessor often has three levels of cache in
between registers and main memory,
which attempt to hide latency.

The cache is, as its name implies,
hidden from the programmer and so
is not visible to C. Efficient use of the
cache is one of the most important
ways of making code run quickly on
a modern processor, yet this is com-
pletely hidden by the abstract ma-
chine, and programmers must rely
on knowing implementation details
of the cache (for example, two values
that are 64-byte-aligned may end up
in the same cache line) to write effi-
cient code.

Optimizing C
One of the common attributes as-
cribed to low-level languages is that
they are fast. In particular, they
should be easy to translate into fast
code without requiring a particularly
complex compiler. The argument
that a sufficiently smart compiler can
make a language fast is one that C

The root cause
of the Spectre
and Meltdown
vulnerabilities
was that processor
architects were
trying to build not
just fast processors,
but fast processors
that expose
the same abstract
machine as
a PDP-11.

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 47

practice

array of structures or vice versa). That
is not necessarily a problem for a low-
level language, where fine-grained con-
trol over data structure layout is a fea-
ture, but it does make it more difficult
to make C fast.

C also requires padding at the
end of a structure because it guaran-
tees no padding in arrays. Padding
is a particularly complex part of the
C specification and interacts poorly
with other parts of the language. For
example, you must be able to compare
two structs using a type-oblivious
comparison (for example, memcmp),
so a copy of a struct must retain its
padding. In some experimentation, a
noticeable amount of total runtime on
some workloads was found spent in
copying padding (which is often awk-
wardly sized and aligned).

Consider two of the core optimiza-
tions that a C compiler performs: SROA
(scalar replacement of aggregates) and
loop unswitching. SROA attempts to
replace structs (and arrays with fixed
lengths) with individual variables. This
then allows the compiler to treat ac-
cesses as independent and elide op-
erations entirely if it can prove that the
results are never visible. This has the
side effect of deleting padding in some
cases but not others.

The second optimization, loop
unswitching, transforms a loop con-
taining a conditional into a condi-
tional with a loop in both paths. This
changes flow control, contradicting
the idea that a programmer knows
what code will execute when low-level
language code runs. It can als o cause
significant problems with C’s no-
tions of unspecified values and unde-
fined behavior.

In C, a read from an uninitialized
variable is an unspecified value and is
allowed to be any value each time it is
read. This is important, because it al-
lows behavior such as lazy recycling
of pages: for example, on FreeBSD
the malloc implementation informs
the operating system that pages are
currently unused, and the operating
system uses the first write to a page as
the hint that this is no longer true. A
read to newly malloced memory may
initially read the old value; then the
operating system may reuse the un-
derlying physical page; and then on
the next write to a different location in

the page replace it with a newly zeroed
page. The second read from the same
location will then give a zero value.

If an unspecified value for flow
control is used (for example, using it
as the condition in an if statement),
then the result is undefined behav-
ior: anything is allowed to happen.
Consider the loop-unswitching opti-
mization, this time in the case where
the loop ends up being executed zero
times. In the original version, the
entire body of the loop is dead code.
In the unswitched version, there is
now a branch on the variable, which
may be uninitialized. Some dead
code has been transformed into un-
defined behavior. This is just one of
many optimizations that a close in-
vestigation of the C semantics shows
to be unsound.

In summary, it is possible to make
C code run quickly but only by spend-
ing thousands of person-years build-
ing a sufficiently smart compiler—
and even then, only if you violate
some of the language rules. Com-
piler writers let C programmers pre-
tend that they are writing code that
is “close to the metal” but must then
generate machine code that has very
different behavior if they want C pro-
grammers to keep believing they are
using a fast language.

Understanding C
One of the key attributes of a low-lev-
el language is that programmers can
easily understand how the language’s
abstract machine maps to the un-
derlying physical machine. This was
certainly true on the PDP-11, where
each C expression mapped trivially
to one or two instructions. Similarly,
the compiler performed a straight-
forward lowering of local variables
to stack slots and mapped primitive
types to things that the PDP-11 could
operate on natively.

Since then, implementations of
C have had to become increasingly
complex to maintain the illusion that
C maps easily to the underlying hard-
ware and gives fast code. A 2015 survey
of C programmers, compiler writers,
and standards committee members
raised several issues about the com-
prehensibility of C.3 For example, C
permits an implementation to insert
padding into structures (but not into

arrays) to ensure all fields have a use-
ful alignment for the target. If you
zero a structure and then set some of
the fields, will the padding bits all be
zero? According to the results of the
survey, 36% were sure that they would
be, and 29% didn’t know. Depending
on the compiler (and optimization
level), it may or may not be.

This is a fairly trivial example, yet a
significant proportion of programmers
either believes the wrong thing or is
not sure. When you introduce point-
ers, the semantics of C become a lot
more confusing. The BCPL model was
fairly simple: values are words. Each
word is either some data or the address
of some data. Memory is a flat array of
storage cells indexed by address.

The C model, in contrast, was in-
tended to allow implementation
on a variety of targets, including
segmented architectures (where a
pointer might be a segment ID and
an offset) and even garbage-collected
virtual machines. The C specification
is careful to restrict valid operations
on pointers to avoid problems for
such systems. The response to Defect
Report 2601 included the notion of
pointer provenance in the definition
of pointer:

Implementations are permit-
ted to track the origins of a bit pat-
tern and treat those representing
an indeterminate value as distinct
from those representing a deter-
mined value. They may also treat
pointers based on different ori-
gins as distinct even though they
are bitwise identical.

Unfortunately, the word provenance
does not appear in the C11 specifica-
tion at all, so it is up to compiler writes
to decide what it means. GNU Com-
piler Collection (GCC) and Clang, for
example, differ on whether a pointer
that is converted to an integer and
back retains its provenance through
the casts. Compilers are free to deter-
mine that two pointers to different
malloc results or stack allocations
always compare as not-equal, even
when a bitwise comparison of the
pointers may show them to describe
the same address.

These misunderstandings are not
purely academic in nature. For ex-

48 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

practice

development that parallel program-
ming is difficult. This would come as
a surprise to Alan Kay, who was able
to teach an actor-model language to
young children, with which they wrote
working programs with more than 200
threads. It comes as a surprise to Er-
lang programmers, who commonly
write programs with thousands of par-
allel components. It is more accurate
to say that parallel programming in
a language with a C-like abstract ma-
chine is difficult, and given the preva-
lence of parallel hardware, from mul-
ticore CPUs to many-core GPUs, that is
just another way of saying that C doesn’t
map to modern hardware very well.	

 Related articles
 on queue.acm.org

The Challenge of Cross-Language
Interoperability
David Chisnall
https://queue.acm.org/detail.cfm?id=2543971

Finding More than One Worm in the Apple
Mike Bland
https://queue.acm.org/detail.cfm?id=2620662

Coding for the Code
Friedrich Steimann and Thomas Kühne
https://queue.acm.org/detail.cfm?id=1113336

References
1.	 C Defect Report 260, 2004; http://www.open-std.org/

jtc1/sc22/wg14/www/docs/dr_260.htm.
2.	 Chadwick, G.A. Communication centric, multi-core,

fine-grained processor architecture. Technical Report
832. University of Cambridge, Computer Laboratory,
2013; http://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-832.pdf.

3.	 Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K.,
Chisnall, D. Watson, R.N.M. and Sewell, P. Into the
depths of C: Elaborating the de facto standards. In
Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
2016, 1–15; http://dl.acm.org/authorize?N04455.

4.	 Ou, A., Nguyen, Q., Lee, Y. and Asanović, K. A case
for MVPs: Mixed-precision vector processors.
In Proceedings of the 2nd Intern’l Workshop on
Parallelism in Mobile Platforms at the 41st Intern’l
Symposium on Computer Architecture. 2014

5.	 Perlis, A. Epigrams on programming. ACM SIGPLAN
Notices 17, 9 (1982).

David Chisnall is a researcher at the University of
Cambridge, where he works on programming language
design and implementation. He has authored books on Xen
and the Objective-C and Go programming languages, and
contributes to the LLVM, Clang, FreeBSD, GNUstep, and
Étoilé open source projects.

Approved for public release; distribution is unlimited.
Sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under contract FA8750-10-C-0237 (“CTSRD”’)
as part of the DARPA CRASH research program. The
views, opinions, and/or findings contained in this report
are those of the authors and should not be interpreted
as representing the official views or policies, either
expressed or implied, of the Department of Defense or
the U.S. government.

Copyright held by owner/author.
Publication rights licensed to ACM. $15.00.

ample, security vulnerabilities have
been observed from signed integer
overflow (undefined behavior in C) and
from code that dereferenced a pointer
before a null check, indicating to the
compiler that the pointer could not
be null because dereferencing a null
pointer is undefined behavior in C and
therefore can be assumed not to hap-
pen (CVE-2009-1897).

In light of such issues, it is diffi-
cult to argue that a programmer can
be expected to understand exactly
how a C program will map to an un-
derlying architecture.

Imagining a Non-C Processor
The proposed fixes for Spectre and
Meltdown impose significant perfor-
mance penalties, largely offsetting the
advances in microarchitecture in the
past decade. Perhaps it is time to stop
trying to make C code fast and instead
think about what programming mod-
els would look like on a processor de-
signed to be fast.

We have a number of examples of
designs that have not focused on tra-
ditional C code to provide some in-
spiration. For example, highly multi-
threaded chips, such as Sun/Oracle’s
UltraSPARC Tx series, do not require
as much cache to keep their execution
units full. Research processors2 have
extended this concept to very large
numbers of hardware-scheduled
threads. The key idea behind these
designs is that with enough high-
level parallelism, you can suspend
the threads that are waiting for data
from memory and fill your execution
units with instructions from oth-
ers. The problem with such designs
is that C programs tend to have few
busy threads.

ARM’s Scalar Vector Extensions
(SVE)—and similar work from Berke-
ley4—provides another glimpse at a
better interface between program
and hardware. Conventional vector
units expose fixed-sized vector opera-
tions and expect the compiler to try
to map the algorithm to the available
unit size. In contrast, the SVE inter-
face expects the programmer to de-
scribe the degree of parallelism avail-
able and relies on the hardware to
map it down to the available number
of execution units. Using this from C
is complex, because the autovector-

izer must infer the available parallel-
ism from loop structures. Generating
code for it from a functional-style
map operation is trivial: the length
of the mapped array is the degree of
available parallelism.

Caches are large, but their size isn’t
the only reason for their complexity.
The cache coherency protocol is one of
the hardest parts of a modern CPU to
make both fast and correct. Most of
the complexity involved comes from
supporting a language in which data
is expected to be both shared and mu-
table as a matter of course. Consider
in contrast an Erlang-style abstract
machine, where every object is either
thread-local or immutable (Erlang
has a simplification of even this,
where there is only one mutable ob-
ject per thread). A cache coherency
protocol for such a system would
have two cases: mutable or shared.
A software thread being migrated to
a different processor would need its
cache explicitly invalidated, but that
is a relatively uncommon operation.

Immutable objects can simplify
caches even more, as well as making
several operations even cheaper. Sun
Labs’ Project Maxwell noted that the
objects in the cache and the objects
that would be allocated in a young
generation are almost the same set.
If objects are dead before they need
to be evicted from the cache, then
never writing them back to main
memory can save a lot of power.
Project Maxwell proposed a young-
generation garbage collector (and
allocator) that would run in the
cache and allow memory to be re-
cycled quickly. With immutable
objects on the heap and a mutable
stack, a garbage collector becomes
a very simple state machine that is
trivial to implement in hardware and
allows for more efficient use of a rela-
tively small cache.

A processor designed purely for
speed, not for a compromise between
speed and C support, would likely sup-
port large numbers of threads, have
wide vector units, and have a much
simpler memory model. Running C
code on such a system would be prob-
lematic, so, given the large amount of
legacy C code in the world, it would not
likely be a commercial success.

There is a common myth in software

