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Abstract

The initial design of Apache Hadoop [1] was tightly fo-
cused on running massive, MapReduce jobs to process a
web crawl. For increasingly diverse companies, Hadoop
has become the data and computational agorá —the de
facto place where data and computational resources are
shared and accessed. This broad adoption and ubiquitous
usage has stretched the initial design well beyond its in-
tended target, exposing two key shortcomings: 1) tight
coupling of a specific programming model with the re-
source management infrastructure, forcing developers to
abuse the MapReduce programming model, and 2) cen-
tralized handling of jobs’ control flow, which resulted in
endless scalability concerns for the scheduler.

In this paper, we summarize the design, development,
and current state of deployment of the next genera-
tion of Hadoop’s compute platform: YARN. The new
architecture we introduced decouples the programming
model from the resource management infrastructure, and
delegates many scheduling functions (e.g., task fault-
tolerance) to per-application components. We provide
experimental evidence demonstrating the improvements
we made, confirm improved efficiency by reporting the
experience of running YARN on production environ-
ments (including 100% of Yahoo! grids), and confirm
the flexibility claims by discussing the porting of several
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programming frameworks onto YARN viz. Dryad, Gi-
raph, Hoya, Hadoop MapReduce, REEF, Spark, Storm,
Tez.

1 Introduction
Apache Hadoop began as one of many open-source im-
plementations of MapReduce [12], focused on tackling
the unprecedented scale required to index web crawls. Its
execution architecture was tuned for this use case, focus-
ing on strong fault tolerance for massive, data-intensive
computations. In many large web companies and star-
tups, Hadoop clusters are the common place where op-
erational data are stored and processed.

More importantly, it became the place within an or-
ganization where engineers and researchers have instan-
taneous and almost unrestricted access to vast amounts
of computational resources and troves of company data.
This is both a cause of Hadoop’s success and also its
biggest curse, as the public of developers extended the
MapReduce programming model beyond the capabili-
ties of the cluster management substrate. A common
pattern submits “map-only” jobs to spawn arbitrary pro-
cesses in the cluster. Examples of (ab)uses include fork-
ing web servers and gang-scheduled computation of it-
erative workloads. Developers, in order to leverage the
physical resources, often resorted to clever workarounds
to sidestep the limits of the MapReduce API.

These limitations and misuses motivated an entire
class of papers using Hadoop as a baseline for unrelated
environments. While many papers exposed substantial
issues with the Hadoop architecture or implementation,
some simply denounced (more or less ingeniously) some
of the side-effects of these misuses. The limitations of
the original Hadoop architecture are, by now, well un-
derstood by both the academic and open-source commu-
nities.

In this paper, we present a community-driven effort to
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move Hadoop past its original incarnation. We present
the next generation of Hadoop compute platform known
as YARN, which departs from its familiar, monolithic
architecture. By separating resource management func-
tions from the programming model, YARN delegates
many scheduling-related functions to per-job compo-
nents. In this new context, MapReduce is just one of
the applications running on top of YARN. This separa-
tion provides a great deal of flexibility in the choice of
programming framework. Examples of alternative pro-
gramming models that are becoming available on YARN
are: Dryad [18], Giraph, Hoya, REEF [10], Spark [32],
Storm [4] and Tez [2]. Programming frameworks run-
ning on YARN coordinate intra-application communi-
cation, execution flow, and dynamic optimizations as
they see fit, unlocking dramatic performance improve-
ments. We describe YARN’s inception, design, open-
source development, and deployment from our perspec-
tive as early architects and implementors.

2 History and rationale

In this section, we provide the historical account of how
YARN’s requirements emerged from practical needs.
The reader not interested in the requirements’ origin is
invited to skim over this section (the requirements are
highlighted for convenience), and proceed to Section 3
where we provide a terse description of the YARN’s ar-
chitecture.

Yahoo! adopted Apache Hadoop in 2006 to replace
the infrastructure driving its WebMap application [11],
the technology that builds a graph of the known web to
power its search engine. At the time, the web graph con-
tained more than 100 billion nodes and 1 trillion edges.
The previous infrastructure, named “Dreadnaught,” [25]
had reached the limits of its scalability at 800 machines
and a significant shift in its architecture was required
to match the pace of the web. Dreadnought already ex-
ecuted distributed applications that resembled MapRe-
duce [12] programs, so by adopting a more scalable
MapReduce framework, significant parts of the search
pipeline could be migrated easily. This highlights the
first requirement that will survive throughout early ver-
sions of Hadoop, all the way to YARN—[R1:] Scalabil-
ity.

In addition to extremely large-scale pipelines for Ya-
hoo! Search, scientists optimizing advertising analytics,
spam filtering, and content optimization drove many of
its early requirements. As the Apache Hadoop com-
munity scaled the platform for ever-larger MapReduce
jobs, requirements around [R2:] Multi-tenancy started
to take shape. The engineering priorities and intermedi-
ate stages of the compute platform are best understood in

this context. YARN’s architecture addresses many long-
standing requirements, based on experience evolving the
MapReduce platform. In the rest of the paper, we will
assume general understanding of classic Hadoop archi-
tecture, a brief summary of which is provided in Ap-
pendix A.

2.1 The era of ad-hoc clusters
Some of Hadoop’s earliest users would bring up a clus-
ter on a handful of nodes, load their data into the Ha-
doop Distributed File System (HDFS)[27], obtain the re-
sult they were interested in by writing MapReduce jobs,
then tear it down [15]. As Hadoop’s fault tolerance im-
proved, persistent HDFS clusters became the norm. At
Yahoo!, operators would load “interesting” datasets into
a shared cluster, attracting scientists interested in deriv-
ing insights from them. While large-scale computation
was still a primary driver of development, HDFS also
acquired a permission model, quotas, and other features
to improve its multi-tenant operation.

To address some of its multi-tenancy issues, Yahoo!
developed and deployed Hadoop on Demand (HoD),
which used Torque[7] and Maui[20] to allocate Hadoop
clusters on a shared pool of hardware. Users would sub-
mit their job with a description of an appropriately sized
compute cluster to Torque, which would enqueue the job
until enough nodes become available. Onces nodes be-
come available, Torque would start HoD’s ’leader’ pro-
cess on the head node, which would then interact with
Torque/Maui to start HoD’s slave processes that subse-
quently spawn a JobTracker and TaskTrackers for that
user which then accept a sequence of jobs. When the
user released the cluster, the system would automatically
collect the user’s logs and return the nodes to the shared
pool. Because HoD sets up a new cluster for every job,
users could run (slightly) older versions of Hadoop while
developers could test new features easily. Since Hadoop
released a major revision every three months, 1. The flex-
ibility of HoD was critical to maintaining that cadence—
we refer to this decoupling of upgrade dependencies as
[R3:] Serviceability.

While HoD could also deploy HDFS clusters, most
users deployed the compute nodes across a shared HDFS
instance. As HDFS scaled, more compute clusters could
be allocated on top of it, creating a virtuous cycle of
increased user density over more datasets, leading to
new insights. Since most Hadoop clusters were smaller
than the largest HoD jobs at Yahoo!, the JobTracker was
rarely a bottleneck.

HoD proved itself as a versatile platform, anticipat-
ing some qualities of Mesos[17], which would extend

1Between 0.1 and 0.12, Hadoop released a major version every
month. It maintained a three month cycle from 0.12 through 0.19
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the framework-master model to support dynamic re-
source allocation among concurrent, diverse program-
ming models. HoD can also be considered a private-
cloud precursor of EC2 Elastic MapReduce, and Azure
HDInsight offerings—without any of the isolation and
security aspects.

2.2 Hadoop on Demand shortcomings

Yahoo! ultimately retired HoD in favor of shared
MapReduce clusters due to middling resource utiliza-
tion. During the map phase, the JobTracker makes ev-
ery effort to place tasks close to their input data in
HDFS, ideally on a node storing a replica of that data.
Because Torque allocates nodes without accounting for
locality,2 the subset of nodes granted to a user’s Job-
Tracker would likely only contain a handful of relevant
replicas. Given the large number of small jobs, most
reads were from remote hosts. Efforts to combat these
artifacts achieved mixed results; while spreading Task-
Trackers across racks made intra-rack reads of shared
datasets more likely, the shuffle of records between map
and reduce tasks would necessarily cross racks, and sub-
sequent jobs in the DAG would have fewer opportuni-
ties to account for skew in their ancestors. This aspect
of [R4:] Locality awareness is a key requirement for
YARN.

High-level frameworks like Pig[24] and Hive[30] of-
ten compose a workflow of MapReduce jobs in a DAG,
each filtering, aggregating, and projecting data at every
stage in the computation. Because clusters were not re-
sized between jobs when using HoD, much of the ca-
pacity in a cluster lay fallow while subsequent, slimmer
stages completed. In an extreme but a very common sce-
nario, a single reduce task running on one node could
prevent a cluster from being reclaimed. Some jobs held
hundreds of nodes idle in this state.

Finally, job latency was dominated by the time spent
allocating the cluster. Users could rely on few heuristics
when estimating how many nodes their jobs required,
and would often ask for whatever multiple of 10 matched
their intuition. Cluster allocation latency was so high,
users would often share long-awaited clusters with col-
leagues, holding on to nodes for longer than anticipated,
raising latencies still further. While users were fond of
many features in HoD, the economics of cluster utiliza-
tion forced Yahoo! to pack its users into shared clus-
ters. [R5:] High Cluster Utilization is a top priority for
YARN.

2Efforts to modify torque to be “locality-aware” mitigated this ef-
fect somewhat, but the proportion of remote reads was still much
higher than what a shared cluster could achieve.

2.3 Shared clusters

Ultimately, HoD had too little information to make intel-
ligent decisions about its allocations, its resource granu-
larity was too coarse, and its API forced users to provide
misleading constraints to the resource layer.

However, moving to shared clusters was non-trivial.
While HDFS had scaled gradually over years, the Job-
Tracker had been insulated from those forces by HoD.
When that guard was removed, MapReduce clusters sud-
denly became significantly larger, job throughput in-
creased dramatically, and many of the features inno-
cently added to the JobTracker became sources of criti-
cal bugs. Still worse, instead of losing a single workflow,
a JobTracker failure caused an outage that would lose all
the running jobs in a cluster and require users to manu-
ally recover their workflows.

Downtime created a backlog in processing pipelines
that, when restarted, would put significant strain on
the JobTracker. Restarts often involved manually killing
users’ jobs until the cluster recovered. Due to the com-
plex state stored for each job, an implementation pre-
serving jobs across restarts was never completely de-
bugged.

Operating a large, multi-tenant Hadoop cluster is
hard. While fault tolerance is a core design principle, the
surface exposed to user applications is vast. Given vari-
ous availability issues exposed by the single point of fail-
ure, it is critical to continuously monitor workloads in
the cluster for dysfunctional jobs. More subtly, because
the JobTracker needs to allocate tracking structures for
every job it initializes, its admission control logic in-
cludes safeguards to protect its own availability; it may
delay allocating fallow cluster resources to jobs because
the overhead of tracking them could overwhelm the Job-
Tracker process. All these concerns may be grouped un-
der the need for [R6:] Reliability/Availability.

As Hadoop managed more tenants, diverse use cases,
and raw data, its requirements for isolation became more
stringent, but the authorization model lacked strong,
scalable authentication—a critical feature for multi-
tenant clusters. This was added and backported to mul-
tiple versions. [R7:] Secure and auditable operation
must be preserved in YARN. Developers gradually hard-
ened the system to accommodate diverse needs for re-
sources, which were at odds with the slot-oriented view
of resources.

While MapReduce supports a wide range of use cases,
it is not the ideal model for all large-scale computa-
tion. For example, many machine learning programs re-
quire multiple iterations over a dataset to converge to
a result. If one composes this flow as a sequence of
MapReduce jobs, the scheduling overhead will signifi-
cantly delay the result [32]. Similarly, many graph al-
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gorithms are better expressed using a bulk-synchronous
parallel model (BSP) using message passing to com-
municate between vertices, rather than the heavy, all-
to-all communication barrier in a fault-tolerant, large-
scale MapReduce job [22]. This mismatch became an
impediment to users’ productivity, but the MapReduce-
centric resource model in Hadoop admitted no compet-
ing application model. Hadoop’s wide deployment in-
side Yahoo! and the gravity of its data pipelines made
these tensions irreconcilable. Undeterred, users would
write “MapReduce” programs that would spawn alter-
native frameworks. To the scheduler they appeared as
map-only jobs with radically different resource curves,
thwarting the assumptions built into to the platform and
causing poor utilization, potential deadlocks, and insta-
bility. YARN must declare a truce with its users, and pro-
vide explicit [R8:] Support for Programming Model
Diversity.

Beyond their mismatch with emerging framework re-
quirements, typed slots also harm utilization. While the
separation between map and reduce capacity prevents
deadlocks, it can also bottleneck resources. In Hadoop,
the overlap between the two stages is configured by the
user for each submitted job; starting reduce tasks later
increases cluster throughput, while starting them early
in a job’s execution reduces its latency.3 The number of
map and reduce slots are fixed by the cluster operator,
so fallow map capacity can’t be used to spawn reduce
tasks and vice versa.4 Because the two task types com-
plete at different rates, no configuration will be perfectly
balanced; when either slot type becomes saturated, the
JobTracker may be required to apply backpressure to job
initialization, creating a classic pipeline bubble. Fungi-
ble resources complicate scheduling, but they also em-
power the allocator to pack the cluster more tightly.
This highlights the need for a [R9:] Flexible Resource
Model.

While the move to shared clusters improved utiliza-
tion and locality compared to HoD, it also brought con-
cerns for serviceability and availability into sharp re-
lief. Deploying a new version of Apache Hadoop in a
shared cluster was a carefully choreographed, and a re-
grettably common event. To fix a bug in the MapReduce
implementation, operators would necessarily schedule
downtime, shut down the cluster, deploy the new bits,
validate the upgrade, then admit new jobs. By conflat-
ing the platform responsible for arbitrating resource us-
age with the framework expressing that program, one
is forced to evolve them simultaneously; when opera-
tors improve the allocation efficiency of the platform,

3This oversimplifies significantly, particularly in clusters of unreli-
able nodes, but it is generally true.

4Some users even optimized their jobs to favor either map or reduce
tasks based on shifting demand in the cluster [28].
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Figure 1: YARN Architecture (in blue the system components,
and in yellow and pink two applications running.)

users must necessarily incorporate framework changes.
Thus, upgrading a cluster requires users to halt, vali-
date, and restore their pipelines for orthogonal changes.
While updates typically required no more than re-
compilation, users’ assumptions about internal frame-
work details—or developers’ assumptions about users’
programs—occasionally created blocking incompatibil-
ities on pipelines running on the grid.

Building on lessons learned by evolving Apache Ha-
doop MapReduce, YARN was designed to address re-
quirements (R1-R9). However, the massive install base
of MapReduce applications, the ecosystem of related
projects, well-worn deployment practice, and a tight
schedule would not tolerate a radical redesign. To avoid
the trap of a “second system syndrome” [6], the new ar-
chitecture reused as much code from the existing frame-
work as possible, behaved in familiar patterns, and left
many speculative features on the drawing board. This
lead to the final requirement for the YARN redesign:
[R10:] Backward compatibility.

In the remainder of this paper, we provide a descrip-
tion of YARN’s architecture (Sec. 3), we report about
real-world adoption of YARN (Sec. 4), provide experi-
mental evidence validating some of the key architectural
choices (Sec. 5) and conclude by comparing YARN with
some related work (Sec. 6).

3 Architecture

To address the requirements we discussed in Section 2,
YARN lifts some functions into a platform layer respon-
sible for resource management, leaving coordination of
logical execution plans to a host of framework imple-
mentations. Specifically, a per-cluster ResourceManager
(RM) tracks resource usage and node liveness, enforces
allocation invariants, and arbitrates contention among
tenants. By separating these duties in the JobTracker’s
charter, the central allocator can use an abstract descrip-
tion of tenants’ requirements, but remain ignorant of the
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semantics of each allocation. That responsibility is dele-
gated to an ApplicationMaster (AM), which coordinates
the logical plan of a single job by requesting resources
from the RM, generating a physical plan from the re-
sources it receives, and coordinating the execution of
that plan around faults.

3.1 Overview
The RM runs as a daemon on a dedicated machine, and
acts as the central authority arbitrating resources among
various competing applications in the cluster. Given this
central and global view of the cluster resources, it can
enforce rich, familiar properties such as fairness [R10],
capacity [R10], and locality [R4] across tenants. De-
pending on the application demand, scheduling priori-
ties, and resource availability, the RM dynamically allo-
cates leases– called containers– to applications to run on
particular nodes.5 The container is a logical bundle of re-
sources (e.g., 〈2GB RAM, 1 CPU〉) bound to a particular
node [R4,R9]. In order to enforce and track such assign-
ments, the RM interacts with a special system daemon
running on each node called the NodeManager (NM).
Communications between RM and NMs are heartbeat-
based for scalability. NMs are responsible for monitor-
ing resource availability, reporting faults, and container
lifecycle management (e.g., starting, killing). The RM
assembles its global view from these snapshots of NM
state.

Jobs are submitted to the RM via a public submis-
sion protocol and go through an admission control phase
during which security credentials are validated and vari-
ous operational and administrative checks are performed
[R7]. Accepted jobs are passed to the scheduler to be
run. Once the scheduler has enough resources, the appli-
cation is moved from accepted to running state. Aside
from internal bookkeeping, this involves allocating a
container for the AM and spawning it on a node in the
cluster. A record of accepted applications is written to
persistent storage and recovered in case of RM restart or
failure.

The ApplicationMaster is the “head” of a job, manag-
ing all lifecycle aspects including dynamically increas-
ing and decreasing resources consumption, managing
the flow of execution (e.g., running reducers against
the output of maps), handling faults and computation
skew, and performing other local optimizations. In fact,
the AM can run arbitrary user code, and can be writ-
ten in any programming language since all communi-
cation with the RM and NM is encoded using extensi-
ble communication protocols6—as an example consider

5We will refer to “containers” as the logical lease on resources and
the actual process spawned on the node interchangeably.

6See: https://code.google.com/p/protobuf/

the Dryad port we discuss in Section 4.2. YARN makes
few assumptions about the AM, although in practice we
expect most jobs will use a higher level programming
framework (e.g., MapReduce, Dryad, Tez, REEF, etc.).
By delegating all these functions to AMs, YARN’s ar-
chitecture gains a great deal of scalability [R1], pro-
gramming model flexibility [R8], and improved upgrad-
ing/testing [R3] (since multiple versions of the same
framework can coexist).

Typically, an AM will need to harness the resources
(cpus, RAM, disks etc.) available on multiple nodes to
complete a job. To obtain containers, AM issues resource
requests to the RM. The form of these requests includes
specification of locality preferences and properties of the
containers. The RM will attempt to satisfy the resource
requests coming from each application according to
availability and scheduling policies. When a resource is
allocated on behalf of an AM, the RM generates a lease
for the resource, which is pulled by a subsequent AM
heartbeat. A token-based security mechanism guaran-
tees its authenticity when the AM presents the container
lease to the NM [R4]. Once the ApplicationMaster dis-
covers that a container is available for its use, it encodes
an application-specific launch request with the lease. In
MapReduce, the code running in the container is either
a map task or a reduce task.7 If needed, running contain-
ers may communicate directly with the AM through an
application-specific protocol to report status and liveness
and receive framework-specific commands– YARN nei-
ther facilitates nor enforces this communication. Over-
all, a YARN deployment provides a basic, yet robust
infrastructure for lifecycle management and monitoring
of containers, while application-specific semantics are
managed by each framework [R3,R8].

This concludes the architectural overview of YARN.
In the remainder of this section, we provide details for
each of the main components.

3.2 Resource Manager (RM)
The ResourceManager exposes two public interfaces to-
wards: 1) clients submitting applications, and 2) Ap-
plicationMaster(s) dynamically negotiating access to re-
sources, and one internal interface towards NodeMan-
agers for cluster monitoring and resource access man-
agement. In the following, we focus on the public pro-
tocol between RM and AM, as this best represents the
important frontier between the YARN platform and the
various applications/frameworks running on it.

The RM matches a global model of the cluster state
against the digest of resource requirements reported by

7In fact, the same code is spawned by TaskTrackers in Hadoop
1.x [R10]. Once started, the process obtains its payload from the AM
across the network, rather than from the local daemon.

https://code.google.com/p/protobuf/
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running applications. This makes it possible to tightly
enforce global scheduling properties (different sched-
ulers in YARN focus on different global properties,
such as capacity or fairness), but it requires the sched-
uler to obtain an accurate understanding of applications’
resource requirements. Communication messages and
scheduler state must be compact and efficient for the
RM to scale against application demand and the size
of the cluster [R1]. The way resource requests are cap-
tured strikes a balance between accuracy in capturing
resource needs and compactness. Fortunately, the sched-
uler only handles an overall resource profile for each ap-
plication, ignoring local optimizations and internal ap-
plication flow. YARN completely departs from the static
partitioning of resources for maps and reduces; it treats
the cluster resources as a (discretized) continuum [R9]—
as we will see in Section 4.1, this delivered significant
improvements in cluster utilization.

ApplicationMasters codify their need for resources in
terms of one or more ResourceRequests, each of which
tracks:

1. number of containers (e.g., 200 containers),
2. resources8 per container 〈2GB RAM, 1 CPU〉,
3. locality preferences, and
4. priority of requests within the application
ResourceRequests are designed to allow users to cap-

ture the full detail of their needs and/or a roll-up version
of it (e.g., one can specify node-level, rack-level, and
global locality preferences [R4]). This allows more uni-
form requests to be represented compactly as aggregates.
Furthermore, this design would allow us to impose size
limits on ResourceRequests, thus leveraging the roll-up
nature of ResourceRequests as a lossy compression of
the application preferences. This makes communication
and storage of such requests efficient for the scheduler,
and it allows applications to express their needs clearly
[R1,R5,R9]. The roll-up nature of these requests also
guides the scheduler in case perfect locality cannot be
achieved, towards good alternatives (e.g., rack-local al-
location, if the desired node is busy).

This resource model serves current applications well
in homogeneous environments, but we expect it to
evolve over time as the ecosystem matures and new re-
quirements emerge. Recent and developing extensions
include: explicit tracking of gang-scheduling needs, and
soft/hard constraints to express arbitrary co-location or
disjoint placement.9

The scheduler tracks, updates, and satisfies these re-
quests with available resources, as advertised on NM
heartbeats. In response to AM requests, the RM gener-

8The resource vector is designed to be extensible.
9While the RM uses locality as a weight for placing containers,

network bandwidth is not explicitly modeled and reserved as in Okto-
pus [5] or Orchestra [9].

ates containers together with tokens that grant access to
resources. The RM forwards the exit status of finished
containers, as reported by the NMs, to the responsible
AMs. AMs are also notified when a new NM joins the
cluster so that they can start requesting resources on the
new nodes.

A recent extension of the protocol allows the RM to
symmetrically request resources back from an applica-
tion. This typically happens when cluster resources be-
come scarce and the scheduler decides to revoke some
of the resources that were given to an application to
maintain scheduling invariants. We use structures sim-
ilar to ResourceRequests to capture the locality prefer-
ences (which could be strict or negotiable). AMs have
some flexibility when fulfilling such ’preemption’ re-
quests, e.g., by yielding containers that are less crucial
for its work (for e.g. tasks that made only little progress
till now), by checkpointing the state of a task, or by
migrating the computation to other running containers.
Overall, this allows applications to preserve work, in
contrast to platforms that forcefully kill containers to
satisfy resource constraints. If the application is non-
collaborative, the RM can, after waiting for a certain
amount of time, obtain the needed resources by instruct-
ing the NMs to forcibly terminate containers.

Given the prenominate requirements from section 2,
it is important to point out what the ResourceMana-
ger is not responsible for. As discussed, it is not re-
sponsible for coordinating application execution or task
fault-tolerance, but neither is is charged with 1) pro-
viding status or metrics for running applications (now
part of the ApplicationMaster), nor 2) serving frame-
work specific reports of completed jobs (now delegated
to a per-framework daemon).10 This is consistent with
the view that the ResourceManager should only handle
live resource scheduling, and helps central components
in YARN scale beyond the Hadoop 1.0 JobTracker.

3.3 Application Master (AM)
An application may be a static set of processes, a logical
description of work, or even a long-running service. The
ApplicationMaster is the process that coordinates the ap-
plication’s execution in the cluster, but it itself is run in
the cluster just like any other container. A component of
the RM negotiates for the container to spawn this boot-
strap process.

The AM periodically heartbeats to the RM to affirm
its liveness and to update the record of its demand. After
building a model of its requirements, the AM encodes
its preferences and constraints in a heartbeat message to

10YARN does provide generic information about completed apps,
containers etc. via a common daemon called Application History
Server.



the RM. In response to subsequent heartbeats, the AM
will receive a container lease on bundles of resources
bound to a particular node in the cluster. Based on the
containers it receives from the RM, the AM may update
its execution plan to accommodate perceived abundance
or scarcity. In contrast to some resource models, the al-
locations to an application are late binding: the process
spawned is not bound to the request, but to the lease. The
conditions that caused the AM to issue the request may
not remain true when it receives its resources, but the
semantics of the container are fungible and framework-
specific [R3,R8,R10]. The AM will also update its re-
source asks to the RM as the containers it receives affect
both its present and future requirements.

By way of illustration, the MapReduce AM optimizes
for locality among map tasks with identical resource re-
quirements. When running on HDFS, each block of in-
put data is replicated on k machines. When the AM re-
ceives a container, it matches it against the set of pend-
ing map tasks, selecting a task with input data close to
the container. If the AM decides to run a map task mi in
the container, then the hosts storing replicas of mi’s input
data are less desirable. The AM will update its request to
diminish the weight on the other k− 1 hosts. This rela-
tionship between hosts remains opaque to the RM; sim-
ilarly, if mi fails, the AM is responsible for updating its
demand to compensate. In the case of MapReduce, note
that some services offered by the Hadoop JobTracker—
such as job progress over RPC, a web interface to sta-
tus, access to MapReduce-specific, historical data—are
no longer part of the YARN architecture. These services
are either provided by ApplicationMasters or by frame-
work daemons.

Since the RM does not interpret the container status,
the AM determines the semantics of the success or fail-
ure of the container exit status reported by NMs through
the RM. Since the AM is itself a container running in a
cluster of unreliable hardware, it should be resilient to
failure. YARN provides some support for recovery, but
because fault tolerance and application semantics are so
closely intertwined, much of the burden falls on the AM.
We discuss the model for fault tolerance in section 3.6.

3.4 Node Manager (NM)

The NodeManager is the “worker” daemon in YARN. It
authenticates container leases, manages containers’ de-
pendencies, monitors their execution, and provides a set
of services to containers. Operators configure it to report
memory, CPU, and other resources available at this node
and allocated for YARN. After registering with the RM,
the NM heartbeats its status and receives instructions.

All containers in YARN– including AMs– are de-
scribed by a container launch context (CLC). This

record includes a map of environment variables, depen-
dencies stored in remotely accessible storage, security
tokens, payloads for NM services, and the command
necessary to create the process. After validating the au-
thenticity of the lease [R7], the NM configures the envi-
ronment for the container, including initializing its mon-
itoring subsystem with the resource constraints speci-
fied in the lease. To launch the container, the NM copies
all the necessary dependencies– data files, executables,
tarballs– to local storage. If required, the CLC also in-
cludes credentials to authenticate the download. Depen-
dencies may be shared between containers in an appli-
cation, between containers launched by the same tenant,
and even between tenants, as specified in the CLC. The
NM eventually garbage collects dependencies not in use
by running containers.

The NM will also kill containers as directed by the
RM or the AM. Containers may be killed when the RM
reports its owning application as completed, when the
scheduler decides to evict it for another tenant, or when
the NM detects that the container exceeded the limits
of its lease [R2,R3,R7]. AMs may request containers to
be killed when the corresponding work isn’t needed any
more. Whenever a container exits, the NM will clean up
its working directory in local storage. When an appli-
cation completes, all resources owned by its containers
are discarded on all nodes, including any of its processes
still running in the cluster.

NM also periodically monitors the health of the phys-
ical node. It monitors any issues with the local disks,
and runs an admin configured script frequently that in
turn can point to any hardware/software issues. When
such an issue is discovered, NM changes its state to be
unhealthy and reports RM about the same which then
makes a scheduler specific decision of killing the con-
tainers and/or stopping future allocations on this node
till the health issue is addressed.

In addition to the above, a NM offers local services
to containers running on that node. For example, the
current implementation includes a log aggregation ser-
vice that will upload data written by the application to
stdout and stderr to HDFS once the application
completes.

Finally, an administrator may configure the NM with a
set of pluggable, auxiliary services. While a container’s
local storage will be cleaned up after it exits, it is al-
lowed to promote some output to be preserved until the
application exits. In this way, a process may produce
data that persist beyond the life of the container, to be
managed by the node. One important use case for these
services are Hadoop MapReduce applications, for which
intermediate data are transferred between map and re-
duce tasks using an auxiliary service. As mentioned ear-
lier, the CLC allows AMs to address a payload to auxil-



(a) Daily jobs

(b) Daily tasks

Figure 2: YARN vs Hadoop 1.0 running on a 2500 nodes pro-
duction grid at Yahoo!.

iary services; MapReduce applications use this channel
to pass tokens that authenticate reduce tasks to the shuf-
fle service.

3.5 YARN framework/application writers
From the preceding description of the core architecture,
we extract the responsibilities of a YARN application au-
thor:

1. Submitting the application by passing a CLC for
the ApplicationMaster to the RM.

2. When RM starts the AM, it should register with
the RM and periodically advertise its liveness and re-
quirements over the heartbeat protocol

3. Once the RM allocates a container, AM can con-
struct a CLC to launch the container on the correspond-
ing NM. It may also monitor the status of the running
container and stop it when the resource should be re-
claimed. Monitoring the progress of work done inside
the container is strictly the AM’s responsibility.

4. Once the AM is done with its work, it should un-
register from the RM and exit cleanly.

5. Optionally, framework authors may add control
flow between their own clients to report job status and
expose a control plane.

Even a simple AM can be fairly complex; a distributed
shell example with a handful of features is over 450 lines
of Java. Frameworks to ease development of YARN ap-
plications exist. We explore some of these in section 4.2.
Client libraries - YarnClient, NMClient, AMRMClient -
ship with YARN and expose higher level APIs to avoid
coding against low level protocols. An AM hardened

against faults– including its own– is non-trivial. If the
application exposes a service or wires a communication
graph, it is also responsible for all aspects of its secure
operation; YARN only secures its deployment.

3.6 Fault tolerance and availability

From its inception, Hadoop was designed to run on com-
modity hardware. By building fault tolerance into every
layer of its stack, it hides the complexity of detection
and recovery from hardware faults from users. YARN in-
herits that philosophy, though responsibility is now dis-
tributed between the ResourceManager and Application-
Masters running in the cluster.

At the time of this writing, the RM remains a single
point of failure in YARN’s architecture. The RM recov-
ers from its own failures by restoring its state from a per-
sistent store on initialization. Once the recovery process
is complete, it kills all the containers running in the clus-
ter, including live ApplicationMasters. It then launches
new instances of each AM. If the framework supports
recovery—and most will, for routine fault tolerance—
the platform will automatically restore users’ pipelines
[R6]. Work is in progress to add sufficient protocol sup-
port for AMs to survive RM restart. With this, AMs can
continue to progress with existing containers while the
RM is down, and can resync with the RM when it comes
back up. Efforts are also underway to address high
availability of a YARN cluster by having passive/active
failover of RM to a standby node.

When a NM fails, the RM detects it by timing out its
heartbeat response, marks all the containers running on
that node as killed, and reports the failure to all running
AMs. If the fault is transient, the NM will re-synchronize
with the RM, clean up its local state, and continue. In
both cases, AMs are responsible for reacting to node fail-
ures, potentially redoing work done by any containers
running on that node during the fault.

Since the AM runs in the cluster, its failure does not
affect the availability of the cluster [R6,R8], but the prob-
ability of an application hiccup due to AM failure is
higher than in Hadoop 1.x. The RM may restart the AM
if it fails, though the platform offers no support to restore
the AMs state. A restarted AM synchronizing with its
own running containers is also not a concern of the plat-
form. For example, the Hadoop MapReduce AM will re-
cover its completed tasks, but as of this writing, running
tasks– and tasks that completed during AM recovery–
will be killed and re-run.

Finally, the failure handling of the containers them-
selves is completely left to the frameworks. The RM col-
lects all container exit events from the NMs and propa-
gates those to the corresponding AMs in a heartbeat re-
sponse. The MapReduce ApplicationMaster already lis-



Figure 3: YARN jobs/containers statistics on a 2500 nodes
production grid at Yahoo!.

tens to these notifications and retries map or reduce tasks
by requesting new containers from the RM.

With that, we conclude our coverage of the architec-
ture and dive into YARN’s real-world installations.

4 YARN in the real-world
We are aware of active use of YARN within several large
companies. The following reports our experience run-
ning YARN at Yahoo!. We then follow it up with a dis-
cussion on few of the popular frameworks that have al-
ready been ported to YARN.

4.1 YARN at Yahoo!

Yahoo! upgraded its production grids from one of the
stable branches of classic Hadoop to YARN. The statis-
tics we report in the following are related to the last 30
days prior to upgrading for classic Hadoop, and the av-
erage statistics from the upgrade time (different for each
grid) up until June 13th, 2013. An important caveat in
interpreting the following statistics: the results we are
about to present come from a real-life upgrading experi-
ence on large clusters, where the focus has been on main-
taining the availability of a critical shared resource and
not on scientific repeatability/consistency, as in a typical
synthetic experiment. To help the reader easily interpret
results, we will report a few global statistics, then fo-
cus on a large grid for which hardware has (mostly) not
changed before and after the upgrade, and finally char-
acterize the workload shift on that specific grid.

4.1.1 YARN across all clusters

In summary, after the upgrade, across all clusters, YARN
is processing about 500,000 jobs daily, for a grand total
of over 230 compute-years every single day. The under-
lying storage exceeds 350 PB.

Figure 4: Job size distribution, and resource utilization

While one of the initial goals of YARN was to im-
prove scalability, Yahoo! reported that they are not run-
ning clusters any bigger than 4000 nodes which used
be the largest cluster’s size before YARN. Significant
gains in resource utilization delivered by YARN have
increased the number of jobs that each grid can sustain.
This has simply removed the need to scale further for
the moment, and has even allowed the operational team
to delay the re-provisioning of over 7000 nodes that have
been decommissioned.

On the other side, it appears that the log aggregation
component of YARN has increased the pressure on the
HDFS NameNode, especially for large jobs. The Na-
meNode is now estimated to be the scalability bottleneck
in Yahoo’s clusters. Fortunately, much work is ongoing
in the community to both improve NameNode through-
put and to limit the pressure on the NameNode by op-
timizing YARN log aggregation. Scalability concerns
within YARN have been observed on a few large clus-
ters with massive amounts of small applications, but re-
cent improvements in heartbeat handling have mitigated
some of these issues.

4.1.2 Statistics on a specific cluster

We will now focus on the experience of and statistics
reported by Yahoo! grid operations team running YARN
on one specific 2500 node grid.

Figure 2 shows the before/after load the operational
team is comfortable running on a 2500 machine clus-
ter. This is the busiest cluster at Yahoo! which is consis-
tently being pushed close to its limit. In Figure 2a, we
show a significant increase in the number of jobs run-
ning: from about 77k on the 1.0 version of Hadoop to
roughly 100k jobs regularly on YARN. Moreover, a sus-
tained throughput of 125k jobs per day was achieved on
this cluster, which peaks at about 150k jobs a day (or
almost about twice the number of jobs that represents
the previous comfort-zone for this cluster). Average job
size increased from 58 maps, 20 reducers to 85 maps, 16



reducers - note that the jobs include user jobs as well as
other tiny jobs that get spawned by system applications
like data copy/transfer via distcp, Oozie [19] and other
data management frameworks. Similarly, the number of
tasks across all jobs increased from 4M on Hadoop 1.0 to
about 10M on average on YARN, with a sustained load
of about 12M and a peak of about 15M - see Figure 2.

Another crucial metric to estimate efficiency of a clus-
ter management system is the average resource utiliza-
tion. Again, the shift in workload makes the statistics we
are about to discuss less useful for direct comparison, but
we observed a significant increase in CPU-utilization.
On Hadoop 1.0, the estimated CPU utilization 11 was
hovering around 320% or 3.2/16 cores pegged on each
of the 2500 machines. Essentially, moving to YARN,
the CPU utilization almost doubled to the equivalent
of 6 continuously pegged cores per box and with peaks
up to 10 fully utilized cores. In aggregate, this indicates
that YARN was capable of keeping about 2.8*2500 =
7000 more cores completely busy running user code.
This is consistent with the increase in number of jobs and
tasks running on the cluster we discussed above. One
of the most important architectural differences that par-
tially explains these improvements is the removal of the
static split between map and reduce slots.

In Figure 3, we plot several job statistics over time:
concurrently running and pending containers, jobs sub-
mitted, completed, running and pending. This shows the
ability of the resource manager to handle large num-
ber of applications, container requests, and executions.
The version of the CapacityScheduler used in this clus-
ter does not use preemption yet—as this is a recently
added feature. While preemption has not been tested at
scale yet, we believe that careful use of preemption will
significantly increase cluster utilization, we show a sim-
ple microbenchmark in Section 5.3.

To further characterize the nature of the workload
running on this cluster, we present in Figure 4 a his-
togram for different size applications depicting: 1) the
total number of applications in each bucket, 2) the total
amount of CPU used by applications in that bucket, and
3) the total number of containers used by applications in
that bucket. As observed in the past, while a large num-
ber of applications are very small, they account for a tiny
fraction of cluster capacity (about 3.5 machines worth of
CPU in this 2500 machines cluster). Interestingly, if we
compare the slot utilization vs CPU utilization we ob-
serve that large jobs seem to use more CPU for each
container. This is consistent with better tuning of large
jobs (e.g., consistent use of compression), and possibly
longer running tasks, thus amortizing startup overhead.

Overall, Yahoo! reports that the engineering effort put

11Computed by aggregating all metered CPU time and dividing by
metered node uptime.

in to harden YARN into a production ready, scalable
system, was well worth the effort. Plans to upgrade to
the latest version, 2.1-beta, continue apace. After over
36,000 years of aggregated compute-time and several
months of production stress-testing, Yahoo’s operational
team confirms that YARN’s architectural shift has been
very beneficial for their workloads. This is well summa-
rized in the following quote: “upgrading to YARN was
equivalent to adding 1000 machines [to this 2500 ma-
chines cluster]”.

4.2 Applications and frameworks

A key requirement for YARN was to enable greater flexi-
bility of programming model. This has been validated by
the many programming frameworks that YARN has al-
ready attracted, despite its freshly-beta status at the time
of this writing. We briefly summarize some projects ei-
ther native to YARN or ported to the platform to illus-
trate the generality of its architecture.

Apache Hadoop MapReduce already works on top of
YARN with almost the same feature-set. It is tested at
scale, rest of ecosystem projects like Pig, Hive, Oozie,
etc. are modified to work on top of MR over YARN,
together with standard benchmarks performing at par
or better compared to classic Hadoop. The MapRe-
duce community has made sure that applications written
against 1.x can run on top of YARN in a fully binary
compatible manner (mapred APIs) or just by recompil-
ing (source compatibility for mapreduce APIs).

Apache Tez is an Apache project (Incubator at the time
of this writing) which aims to provide a generic directed-
acyclic-graph (DAG) execution framework. One of its
goals is to provide a collection of building blocks which
can be composed into an arbitrary DAG (including a
simple 2-stage (Map and Reduce) DAG to maintain
compatibility with MapReduce). Tez provides query ex-
ecution systems like Hive and Pig with a more natural
model for their execution plan, as against forcing these
plans to be transformed into MapReduce. The current
focus is on speeding up complex Hive and Pig queries
which typically require multiple MapReduce jobs, al-
lowing to run as a single Tez job. In the future, rich fea-
tures such as general support for interactive queries and
generic DAGs will be considered.

Spark is an open-source research project from UC
Berkeley [32], that targets machine learning and inter-
active querying workloads. The central idea of resilient
distributed datasets (RDD) is leveraged to achieve sig-
nificant performance improvements over classic MapRe-
duce for this class of applications. Spark has been re-
cently ported to YARN [?].

Dryad [18] provides DAG as the abstraction of execu-
tion flow, and it has been integrated with LINQ [31]. The



version ported to YARN is 100% native C++ and C# for
worker nodes, while the ApplicationMaster leverages a
thin layer of Java interfacing with the ResourceMana-
ger around the native Dryad graph manager. Eventually
the Java layer will be substituted by direct interaction
with protocol-buffer interfaces. Dryad-on-YARN is fully
compatible with its non-YARN version.

Giraph is a highly scalable, vertex-centric graph com-
putation framework. It was originally designed to run on
top of Hadoop 1.0 as a Map-only job, where one map is
special and behaves as coordinator. The port to YARN
of Giraph is very natural, the execution coordinator role
is taken by the ApplicationMaster, and resources are re-
quested dynamically.

Storm is an open-source distributed, real-time pro-
cessing engine, designed to scale across a cluster of ma-
chines and provide parallel stream processing. A com-
mon use case combines Storm for online computation
and MapReduce as batch processor. By porting Storm
on YARN a great deal of flexibility in resource alloca-
tion can be unblocked. Moreover, the shared access to
the underlying HDFS storage layer simplifies the design
of multi-framework workloads.

REEF meta-framework: YARN’s flexibility comes at
potentially significant effort for application implemen-
tors. Writing an ApplicationMaster and handling all as-
pects of fault tolerance, execution flow, coordination,
etc. is a non-trivial endeavor. The REEF project [10] rec-
ognizes this and factors out several hard-to-build com-
ponents that are common to many applications. This
includes storage management, caching, fault-detection,
checkpointing, push-based control flow (showcased ex-
perimentally later), and container reuse. Framework de-
signers can build on top of REEF and more easily
than directly on YARN and reuse many common ser-
vices/libraries provided by REEF. REEF design makes it
suitable for both MapReduce and DAG like executions
as well as iterative and interactive computations.

Hoya is a Java-tool designed to leverage YARN to
spin up dynamic HBase clusters[21] on demand. HBase
clusters running on YARN can also grow and shrink
dynamically (in our test cluster, RegionServers can be
added/removed in less than 20 seconds). While the im-
plications of mixing service and batch workloads in
YARNare still being explored, early results from this
project are encouraging.

5 Experiments

In the previous section, we established the real-world
success of YARN by reporting on large production de-
ployments and a thriving ecosystem of frameworks. In
this section, we present more specific experimental re-

sults to demonstrate some of YARN’s wins.

5.1 Beating the sort record
At the time of this writing, the MapReduce imple-
mentation on YARN is officially 12 holding both the
Daytona and Indy GraySort benchmark records, sort-
ing 1.42TB/min. The same system also reported (out-
side the competition) MinuteSort results sorting 1.61TB
& 1.50TB in a minute, better than the current records.
The experiments were run on 2100 nodes each equipped
with two 2.3Ghz hexcore Xeon E5-2630, 64 GB mem-
ory, and 12x3TB disks each. The summary of results is
provided in the following table:

Benchmark Data Type Data Size Time Rate
Daytona GraySort no-skew 102.5 TB 72min 1.42TB/min
Daytona GraySort skew 102.5 TB 117min 0.87TB/min
Daytona MinuteSort no-skew 11497.86 GB 87.242 sec -
Daytona MinuteSort skew 1497.86 GB 59.223 sec -
Indy MinuteSort no-skew 1612.22 GB 58.027 sec -

The full report [16] provides a detailed description of
the experiments.

5.2 MapReduce benchmarks
MapReduce continues to be the most important and
commonly used application on top of YARN. We are
pleased to report that most of the standard Hadoop
benchmarks perform better on YARN in Hadoop 2.1.0
compared to the current stable Hadoop-1 release 1.2.1.
The summary of the MapReduce benchmarks on a 260
node cluster comparing 1.2.1 with 2.1.0 is provided
below. Each slave node is running 2.27GHz Intel(R)
Xeon(R) CPU totalling to 16 cores, has 38GB physical
memory, and 6x1TB 7200 RPM disks each, formatted
with ext3 file-system. The network bandwidth per node
is 1Gb/sec. Each node runs a DataNode and a Node-
Manager with 24GB RAM allocated for containers. We
run 6 maps and 3 reduces in 1.2.1, and 9 containers in
2.1.0. Each map occupies 1.5GB JVM heap and 2GB
total memory, while each reduce takes 3GB heap 4GB
total. JobTracker/ResourceManager run on a dedicated
machine so is the HDFS NameNode.

Benchmark Avg runtime (s) Throughput(GB/s)
1.2.1 2.1.0 1.2.1 2.1.0

RandomWriter 222 228 7.03 6.84
Sort 475 398 3.28 3.92
Shuffle 951 648 - -
AM Scalability 1020 353/303 - -
Terasort 175.7 215.7 5.69 4.64
Scan 59 65 - -
Read DFSIO 50.8 58.6 - -
Write DFSIO 50.82 57.74 - -

Table 1: Results from canonical Hadoop benchmarks

12Source: sortbenchmark.org as of June, 2013.

sortbenchmark.org


We interpret the results of these benchmarks as fol-
lows. The sort benchmark measures the end-to-end time
for a 1.52TB (6GB per node) sort in HDFS, using de-
fault settings. The shuffle benchmark calibrates how fast
the intermediate outputs from m maps are shuffled to n
reduces using only synthetic data; records are neither
read from nor written to HDFS. While the sort bench-
mark would typically benefit from improvements to the
HDFS data path, both benchmarks perform better on
YARN primarily due to significant improvements in the
MapReduce runtime itself: map-side sort improvements,
a reduce client that pipelines and batches transfers of
map output, and a server-side shuffle based on Netty [3].
The scan and DFSIO jobs are canonical benchmarks
used to evaluate HDFS and other distributed filesys-
tems run under Hadoop MapReduce; the results in ta-
ble 1 are a coarse measure of the effect attributable to
HDFS in our experiments. Our access to the cluster was
too brief to debug and characterize the middling perfor-
mance from the 2.1.0 filesystem. Despite this noise, and
even though YARN’s design optimizes for multi-tenant
throughput, its performance for single jobs is competi-
tive with the central coordinator.

The AM scalability benchmark measures single-job
robustness by saturating the AM with container book-
keeping duties. Table 1 includes two measurements of
the MapReduce AM. The first experiment restricts avail-
able resources to match the slots available to the 1.x
deployment. When we remove this artificial limit and
allow YARN to use the full node, its performance im-
proves significantly. The two experiments estimate the
overhead of typed slots. We also attribute improved per-
formance to more frequent node heartbeats and faster
scheduling cycles, which we discuss in greater detail be-
low. Since YARN is principally responsible for distribut-
ing and starting applications, we consider the scalability
benchmark to be a critical metric.

Some architectural choices in YARN targeted bottle-
necks we observed in production clusters. As discussed
in section 2.3, typed slots harm throughput by creat-
ing an artificial mismatch between a fungible supply
of resources on a node and the semantics of execut-
ing Hadoop MapReduce tasks. While section 4.1 cov-
ers the gains in aggregate workloads, we saw benefits
to scheduling even single jobs. We attribute the bulk of
this gain to improved heartbeat handling. In Hadoop-1,
each node could heartbeat only every 30-40 seconds in
large clusters due to coarse-grained locking in the Job-
Tracker. Despite clever workarounds to lower latency,
such as short-circuit paths for handling lightweight up-
dates and adaptive delays to hasten important notifica-
tions, reconciling state in the JobTracker remained the
principal cause of latency in large clusters. In contrast,
NodeManagers heartbeat every 1-3 seconds. The RM

Figure 5: Effect of work-preserving preemption on the Capac-
ityScheduler efficiency.

code is more scalable, but it also solves a humbler set
of constraints per request.

5.3 Benefits of preemption
In Figure 5, we demonstrate a recently-added feature
in YARN: the ability to enforce global properties us-
ing work-preserving preemption. We ran experiments on
a small (10 machine) cluster, to highlight the potential
impact of work-preserving preemption. The cluster runs
CapacityScheduler, configured with two queues A and
B, respectively entitled to 80% and 20% of the capac-
ity. A MapReduce job is submitted in the smaller queue
B, and after a few minutes another MapReduce job is
submitted in the larger queue A. In the graph, we show
the capacity assigned to each queue under three config-
urations: 1) no capacity is offered to a queue beyond
its guarantee (fixed capacity) 2) queues may consume
100% of the cluster capacity, but no preemption is per-
formed, and 3) queues may consume 100% of the clus-
ter capacity, but containers may be preempted. Work-
preserving preemption allows the scheduler to over-
commit resources for queue B without worrying about
starving applications in queue A. When applications in
queue A request resources, the scheduler issues pre-
emption requests, which are serviced by the Applica-
tionMaster by checkpointing its tasks and yielding con-
tainers. This allows queue A to obtain all its guaran-
teed capacity (80% of cluster) in a few seconds, as op-
posed to case (2) in which the capacity rebalancing takes



about 20 minutes. Finally, since the preemption we use
is checkpoint-based and does not waste work, the job
running in B can restart tasks from where they left off,
and it does so efficiently.

5.4 Improvements with Apache Tez
We present some rudimentary improvements when run-
ning a decision support query on Apache Hive running
against Apache Tez (the integration in early stages at the
time of this writing). Query 12 from TPC-DS bench-
mark [23], involves few joins, filters and group by aggre-
gations. Even after aggressive plan level optimizations,
Hive generates an execution plan consisting of multiple
jobs when using MapReduce. The same query results in
a linear DAG when executing against Tez, with a sin-
gle Map stage followed by multiple Reduce stages. The
query execution time when using MapReduce is 54 sec-
onds on a 20 node cluster against 200 scale factor data,
and this improves to 31 seconds when using Tez. Most
of this saving can be attributed to scheduling and launch-
ing overheads of multiple MapReduce jobs and avoiding
the unnecessary steps of persisting outputs of the inter-
mediate MapReduce jobs to HDFS.

5.5 REEF: low latency with sessions
One of the key aspects of YARN is that it enables frame-
works built on top of it to manage containers and com-
munications as they see fit. We showcase this by lever-
aging the notion of container reuse and push-based com-
munications provided by REEF. The experiment is based
on a simple distributed-shell application built on top of
REEF. We measure the client-side latency on a com-
pletely idle cluster when submitting a series of unix
commands (e.g., date). The first command that is is-
sued incurs the full cost of scheduling the application
and acquiring containers, while subsequent commands
are quickly forwarded through the Client and Appli-
cationMaster to already running containers for execu-
tion. The push-based messaging further reduces latency.
The speedup in our experiment is very substantial, ap-
proaching three orders of magnitude—from over 12sec
to 31ms in average.

6 Related work
Others have recognized the same limitations in the clas-
sic Hadoop architecture, and have concurrently devel-
oped alternative solutions, which can be closely com-
pared to YARN. Among the many efforts the most
closely resembling YARN are: Mesos [17], Omega [26],
Corona [14], and Cosmos [8], maintained and used re-
spectively by Twitter, Google, Facebook and Microsoft.

These systems share a common inspiration, and the
high-level goal of improving scalability, latency and pro-
gramming model flexibility. The many architectural dif-
ferences are a reflection of diverse design priorities, and
sometimes simply the effect of different historical con-
texts. While a true quantitative comparison is impossible
to provide, we will try to highlight some of the archi-
tectural differences and our understanding of their ratio-
nale.

Omega’s design leans more heavily towards dis-
tributed, multi-level scheduling. This reflects a greater
focus on scalability, but makes it harder to enforce global
properties such as capacity/fairness/deadlines. To this
goal the authors seem to rely on coordinated develop-
ment of the various frameworks that will be respectful of
each other at runtime. This is sensible for a closed-world
like Google, but not amenable to an open platform like
Hadoop where arbitrary frameworks from diverse inde-
pendent sources are share the same cluster.

Corona uses push based communication as opposed to
the heartbeat based control-plane framework approach
in YARN and other frameworks. The latency/scalability
trade- offs are non-trivial and would deserve a detailed
comparison.

While Mesos and YARN both have schedulers at two
levels, there are two very significant differences. First,
Mesos is an offer-based resource manager, whereas
YARN has a request-based approach. YARN allows the
AM to ask for resources based on various criteria in-
cluding locations, allows the requester to modify future
requests based on what was given and on current us-
age. Our approach was necessary to support the loca-
tion based allocation. Second, instead of a per-job intra-
framework scheduler, Mesos leverages a pool of central
schedulers (e.g., classic Hadoop or MPI). YARN enables
late binding of containers to tasks, where each individ-
ual job can perform local optimizations, and seems more
amenable to rolling upgrades (since each job can run on
a different version of the framework). On the other side,
per-job ApplicationMaster might result in greater over-
head than the Mesos approach.

Cosmos closely resembles Hadoop 2.0 architecturally
with respect to storage and compute layers with the
key difference of not having a central resource man-
ager. However, it seems to be used for a single appli-
cation type: Scope [8]. By virtue of a more narrow target
Cosmos can leverage many optimizations such as native
compression, indexed files, co-location of partitions of
datasets to speed up Scope. The behavior with multiple
application frameworks is not clear.

Prior to these recent efforts, there is a long history of
work on resource management and scheduling - Con-
dor [29], Torque [7], Moab [13] and Maui [20]. Our
early Hadoop clusters used some of these systems, but

xliu
高亮

xliu
下划线

xliu
下划线



we found that they could not support the MapReduce
model in a first-class way. Specifically, neither the data
locality nor the elastic scheduling needs of map and re-
duce phases were expressible, so one was forced to al-
locate “virtual” Hadoop with the attendant utilization
costs discussed in section 2.1. Perhaps some of these is-
sues were due to the fact that many of these distributed
schedulers were originally created to support MPI style
and HPC application models and running coarse-grained
non-elastic workloads. These cluster schedulers do al-
low clients to specify the types of processing environ-
ments, but unfortunately not locality constraints which
is a key concern for Hadoop.

Another class of related technologies comes from the
world of cloud infrastructures such as EC2, Azure, Euca-
lyptus and VMWare offerings. These mostly target VM-
based sharing of a cluster, and are generally designed for
long running processes (as the VM boot-times overheads
are prohibitive).

7 Conclusion
In this paper, we summarized our recollection of the his-
tory of Hadoop, and discussed how wild adoption and
new types of applications has pushed the initial archi-
tecture well beyond what it was designed to accomplish.
We then described an evolutionary, yet profound, archi-
tectural transformation that lead to YARN. Thanks to
the decoupling of resource management and program-
ming framework, YARN provides: 1) greater scalabil-
ity, 2) higher efficiency, and 3) enables a large num-
ber of different frameworks to efficiently share a cluster.
These claims are substantiated both experimentally (via
benchmarks), and by presenting a massive-scale produc-
tion experience of Yahoo!—which is now 100% running
on YARN. Finally, we tried to capture the great deal of
excitement that surrounds this platform, by providing a
snapshot of community activity and by briefly report-
ing on the many frameworks that have been ported to
YARN. We believe YARN can serve as both a solid pro-
duction framework and also as an invaluable playground
for the research community.
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A Classic Hadoop
Before YARN, Hadoop MapReduce clusters were com-
posed of a master called JobTracker (JT) and worker
nodes running TaskTrackers (TT). Users submitted
MapReduce jobs to the JT which coordinated its execu-
tion across the TTs. A TT was configured by an operator
with a fixed number of map slots and reduce slots. TTs
periodically heartbeated into the JT to report the status
of running tasks on that node and to affirm its liveness.
On a heartbeat, the JT updated its state corresponding to
the tasks running on that node, taking actions on behalf
of that job (e.g.,scheduling failed tasks for re-execution),
matching fallow slots on that node against the scheduler
invariants, matching eligible jobs against available re-
sources, favoring tasks with data local to that node.

As the central arbiter of the compute cluster, the
JT was also responsible for admission control, track-
ing the liveness of TTs (to re-execute running tasks
or tasks whose output becomes unavailable), launching
tasks speculatively to route around slow nodes, report-
ing job status to users through a web server, recording
audit logs and aggregate statistics, authenticating users
and many other functions; each of these limited its scal-
ability.
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